Effect of temperature on spike-triggered average torque and electrophysiological properties of low-threshold motor units.

نویسندگان

  • Dario Farina
  • Lars Arendt-Nielsen
  • Thomas Graven-Nielsen
چکیده

The aim of the study was to jointly analyze temperature-induced changes in low-threshold single motor unit twitch torque and action potential properties. Joint torque, multichannel surface, and intramuscular electromyographic signals were recorded from the tibialis anterior muscle of 12 subjects who were instructed to identify the activity of a target motor unit using intramuscular electromyographic signals as feedback. The target motor unit was activated at the minimum stable discharge rate in seven 3-min-long contractions. The first three contractions (C1-C3) were performed at 33 degrees C skin temperature. After 5 min, the subject performed three contractions at 33 degrees C (T1), 39 degrees C (T2), and 45 degrees C (T3), followed by a contraction at 33 degrees C (C4) skin temperature. Twitch torque and multichannel surface action potential of the target motor unit were obtained by spike-triggered averaging. Discharge rate (mean +/- SE, 7.1 +/- 0.5 pulses/s), interpulse interval variability (35.8 +/- 9.2%), and recruitment threshold (4.5 +/- 0.4% of the maximal voluntary torque) were not different among the seven contractions. None of the investigated variables were different among C1-C3, T1, and C4. Conduction velocity and peak twitch torque increased with temperature (P < 0.05; T1: 3.53 +/- 0.21 m/s and 0.82 +/- 0.23 mN x m, T2: 3.93 +/- 0.24 m/s and 1.17 +/- 0.36 mN x m, T3: 4.35 +/- 0.25 m/s and 1.46 +/- 0.40 mN x m, respectively). Twitch time to peak and surface action potential peak-to-peak amplitude were smaller in T3 (61.8 +/- 2.0 ms and 27.4 +/- 5.1 microV, respectively) than in T1 (71.9 +/- 4.1 ms and 35.0 +/- 6.5 microV, respectively) (P < 0.05). The relative increase in conduction velocity between T1 and T3 was positively correlated (P < 0.05) with the increase in twitch peak amplitude (r2 = 0.48), with the decrease in twitch time to peak (r2 = 0.43), and with the decrease in action potential amplitude (r2 = 0.50). In conclusion, temperature-induced modifications in fiber membrane conduction properties may have a direct effect on contractile motor unit properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike-triggered average torque and muscle fiber conduction velocity of low-threshold motor units following submaximal endurance contractions.

The motor unit twitch torque is modified by sustained contraction, but the association to changes in muscle fiber electrophysiological properties is not fully known. Thus twitch torque, muscle fiber conduction velocity, and action potential properties of single motor units were assessed in 11 subjects following an isometric submaximal contraction of the tibialis anterior muscle until endurance....

متن کامل

Motor-unit synchronization alters spike-triggered average force in simulated contractions.

The purpose of the study was to quantify the effect of motor-unit synchronization on the spike-triggered average forces of a population of motor units. Muscle force was simulated by defining mechanical and activation characteristics of the motor units, specifying motor neuron discharge times, and imposing various levels of motor-unit synchronization. The model comprised 120 motor units. Simulat...

متن کامل

Discharge properties of motor units during steady isometric contractions performed with the dorsiflexor muscles.

The purpose of this study was to record the discharge characteristics of tibialis anterior motor units over a range of target forces and to import these data, along with previously reported observations, into a computational model to compare experimental and simulated measures of torque variability during isometric contractions with the dorsiflexor muscles. The discharge characteristics of 44 m...

متن کامل

The Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus

Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...

متن کامل

Comparison of the effect of quasitrapezoidal and rectangular pulses on bio- electrical activity, calcium spike properties and afterhyperpolarization potentials of Fl cells of Helix aspersa using intracellular recording

  While the effect of changes of stimulus waveform (quasitrapezoidal and rectangular current pulses) on nerve activation is clear, but there is no evidence on the effect of quasitrapezoidal pulses on ionic currents of cellular membrane. In the present study, the effect of depolarizing quasi-trapezoidal current pulses, in comparison with that of depolarizing rectangular current pulses, on firing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 99 1  شماره 

صفحات  -

تاریخ انتشار 2005